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Abstract. We investigate near-threshold neutral pion photoproduction off protons to fourth order in heavy-
baryon chiral perturbation theory in the light of the new data from MAMI. We show that the unitarity
cusp at the secondary π+n threshold is in agreement with expectations from the final-state theorem. We
also analyze the fourth-order corrections to the P -wave low-energy theorems and show that potentially
large ∆ isobar contributions are cancelled by sizeable pion loop effects. This solidifies the parameter-free
third-order predictions, which are in good agreement with the data.

PACS. 12.20.Ds Specific calculations – 12.39.Fe Chiral Lagrangians – 25.20.Lj Photoproduction reactions

1 Introduction

Chiral perturbation theory is the tool to systematically in-
vestigate the consequences of the spontaneous and explicit
chiral symmetry breaking in QCD. S-matrix elements and
transition currents of quark operators are calculated with
the help of an effective field theory formulated in terms of
the asymptotically observed fields, the Goldstone bosons
and the low-lying baryons. A systematic perturbative ex-
pansion in terms of small external momenta and meson
masses is possible. We call this double expansion from here
on chiral expansion and denote the small parameters col-
lectively by q. Beyond leading order, coupling constants
not fixed by chiral symmetry appear, the so-called low-
energy constants (LECs). These have to be determined by
a fit to some data or using some model. A large variety of
processes such as pion-nucleon scattering, real and virtual
Compton scattering and so on has already been investi-
gated in this framework, sharpening our understanding of
the chiral structure of QCD (for reviews, see, e.g. [1,2]).

Neutral pion photoproduction off protons and
deuterons (which gives access to the elementary neutron
amplitudes) is one of the prime processes to test our un-
derstanding of the chiral pion-nucleon dynamics for es-
sentially two reasons. First, over the last decade fairly
precise differential and total cross-section data have been
obtained at MAMI [3–5] and SAL [6–8]. A further exper-
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iment involving linearly polarized photons was performed
at MAMI, which not only improved the differential cross-
sections but also gave the first determination of the photon
asymmetry [9]. Second, the S-wave amplitude E0+ is sen-
sitive to a particular pion loop effect [10]. In the thresh-
old region, the fourth-order heavy-baryon chiral pertur-
bation theory calculation (HBCHPT) (which involves the
sum a1 + a2 of two low-energy constants) agrees with
what is found in the multipole analysis of the data [5,
11,12]. In addition, the rather counterintuitive prediction
for the electric-dipole amplitude for π0 photoproduction
off the neutron, |Eπ0n

0+ | > |Eπ0p
0+ | translates into a thresh-

old deuteron amplitude Ed [13] that was verified by a
SAL experiment within 20% [8]. Moreover, in [11] it was
also shown that there are two P -wave low-energy theorems
(LETs) for the P1,2 multipoles which show a rapid conver-
gence based on the third-order calculation. While the LET
for P1 could be tested and verified from the unpolarized
data, only the recent MAMI measurement of �γ p → π0 p
allows to disentangle the contribution from the P2 and
the P3 multipoles (the latter being largely determined by
the LEC bP at third order)1. It has been frequently ar-
gued that contributions from the delta isobar, that only
appear at fourth order in the chiral expansion for P1 and
P2, will not only spoil the rapid convergence of the P -
wave LETs but also lead to numerically different values.

1 Note that the first but somewhat model-dependent com-
parison between P -wave multipoles and the LET predictions
was given by Bergstrom [14].
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This is witnessed, e.g., in an effective field theory approach
including the delta as an active degree of freedom [15]
in which one counts the nucleon-delta mass splitting as
another small parameter. A third-order analysis in that
framework seems to indicate indeed large corrections ren-
dering the agreement of the prediction for P1 at threshold
with the value deduced from the differential cross-sections
as accidental [16].

In this paper, we complete the fourth-order (complete
one loop) analysis based on HBCHPT by evaluating the
corresponding corrections for the three P -wave multipoles.
We use this framework to analyze the new data from
MAMI, which confirms and sharpens previous findings
concerning the electric-dipole amplitude E0+ and sheds
new light on the convergence issue of the P -wave LETs.

2 Formal aspects

In this section, we collect some basic formulas needed for
describing the reaction γ(k) + p(p1) → π0(q) + p(p2). In
the threshold region, it is legitimate to consider π0 pho-
toproduction in S- and P -wave approximation, with the
corresponding transition current matrix element given by

m

4π
√

s
T · ε = i�σ · �ε [E0+(ω) + k̂ · q̂ P1(ω)]

+i�σ · k̂ �ε · q̂ P2(ω) + (q̂ × k̂) · �ε P3(ω) . (1)

Here, m = 938.27 MeV is the proton mass, s = (p1+k)2 =
(p2 + q)2 the total centre-of-mass (cm) energy squared,
ω = (s − m2 + M2

π0)/2
√

s the cm energy of the produced
neutral pion, and εµ = (0,�ε ) the polarization vector of the
real photon in the Coulomb gauge subject to the transver-
sality condition �ε ·�k = 0. At threshold, the π0 is produced
at rest in the cm frame, �q = 0, so that ωthr = Mπ0 =
134.97 MeV corresponding to

√
sthr = Mπ0 + m. The sec-

ondary π+n threshold opens at ωc = 140.11 MeV, where√
sc = Mπ+ + mn (with mn = 939.57 MeV, the neutron

mass). At that point, the strong unitary cusp related to
the rescattering process γp → π+n → π0p occurs in the
electric-dipole amplitude E0+(ω). In the vicinity of the
cusp its generic form reads E0+(ω) = −a − b

√
1 − ω2/ω2

c

with two constants a and b. The amplitudes P1,2,3(ω) are
linear combinations of the more commonly used magnetic
dipole (M1±) and electric quadrupole (E1+) P -wave pion
photoproduction multipoles. The combinations P1,2,3(ω)
arise most naturally from the decomposition of the T -
matrix in eq. (1). Of importance for the later discussion
are also the threshold P -wave slopes P 1,2, defined via

P 1,2 = lim
�q→0

P1,2(ω)
|�q | , (2)

because for these, the LETs mentioned in the introduction
have been derived in [11]. The differential cross-section
and the photon asymmetry Σ can be expressed in terms
of the multipoles as

|�k |
|�q |

dσ

dΩcm
= A + B cos θ + C cos2 θ , (3)

A = |E0+|2 +
1
2
|P2|2 +

1
2
|P3|2 , (4)

B = 2Re(E0+P ∗
1 ) , (5)

C = |P1|2 − 1
2
|P2|2 − 1

2
|P3|2 , (6)

Σ =
|�q | sin2 θ

2|�k |

(
dσ

dΩcm

)−1 (
|P3|2 − |P2|2

)
, (7)

with θ, the cm scattering angle and we have dropped the
argument ω.

3 Chiral expansion of the multipoles

We wish to calculate the T -matrix element, eq. (1), to
order O(q4). For the electric-dipole amplitude E0+(ω),
this has been already done in [11]. In that paper, also
the third-order terms for the P -wave multipoles P1,2,3(ω)
were evaluated. Here, we give these up to and including
fourth order. We make use of the standard heavy-baryon
effective chiral Lagrangian, which has been given to com-
plete one loop accuracy, i.e. O(q4), in ref. [17]. The expres-
sions for the multipoles split in three parts. First, one has
the (renormalized) Born terms which subsume the lowest-
order couplings (gπN ,m) complemented by the anoma-
lous magnetic moment (κp) contributions together with all
pion loop corrections of these parameters at order O(q3)
and O(q4). Secondly, there are the pion loop graphs with
at most one insertion from the dimension two Lagrangian
L(2)

πN . For these, the one-nucleon reducible parts which just
renormalize the Born terms are taken out. Thirdly, there
are the one-nucleon irreducible counterterm contributions
which lead to simple polynomial amplitudes.

Consider first the renormalized Born terms which are
expressed in terms of the physical parameters gπN ,m, κp.
The second- and third-order terms for PBorn

1,2,3 (ω) are given
in the appendix of ref. [11]. We display here only the novel
fourth-order contributions

PBorn
1 (ω) =

egπN |�q |
320πm4

×
{

4M4
π

ω2
+(21+19κp)M2

π +(20+6κp)ω2

}
, (8)

PBorn
2 (ω) =

egπN |�q |
320πm4

×
{

4M4
π

ω2
−(43+15κp)M2

π−(26+10κp)ω2

}
, (9)

PBorn
3 (ω) =

egπN |�q |
160πm4

{
(3κp−2)M2

π−(13+8κp)ω2
}

, (10)

with |�q | =
√

ω2 − M2
π . From now on, Mπ = 134.97 MeV

denotes the neutral pion mass, gπN = 13.1 is the strong
pion-nucleon coupling constant and κp = 1.793 the
anomalous magnetic moment of the proton.

Next, we give the P -wave contributions from the
fourth-order one loop graphs. According to their prefac-
tor, gA or g3

A, these fall into two classes. In these loop
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diagrams charged as well as neutral pions occur in inter-
nal lines and we have neglected throughout the small mass
difference Mπ+−Mπ0 = 4.6 MeV. In sharp contrast to the
S-wave amplitude E0+ (having a strong cusp effect) this
approximation is legitimate for P -wave amplitudes since
their imaginary parts and consequently their cusp effects
are extremely tiny corrections. The numerical differences
which result from taking the charged or neutral pion mass
for Mπ should be regarded as an intrinsic inaccuracy of
our O(q4) calculation.

First, we give the analytical expressions for the O(q4)
loops proportional to gA:

P loop
1 (ω) =

egA |�q |
m(4πFπ)3

{(
3 +

8
3
c̃4

)
ω2 ln

Mπ

λ

+
4
9
c̃4(6M2

π − 5ω2) +
M2

π

2
arcsin2 ω

Mπ

−8c̃4

3ω
(M2

π − ω2)3/2 arcsin
ω

Mπ
+ ω

√
M2

π − ω2

× arcsin
ω

Mπ
+

2ω3√
M2

π − ω2
arccos

ω

Mπ

}
, (11)

P loop
2 (ω) =

egA |�q |
m(4πFπ)3

{
−

(
2 +

4
3
c̃4

)
ω2 ln

Mπ

λ

+ω2 +
8
9
c̃4(3M2

π + 2ω2) − 2c̃4M
2
π arcsin2 ω

Mπ

+
π

2

[
ω
√

M2
π − ω2 − M2

π arcsin
ω

Mπ

]

−
[
2ω +

4c̃4

3ω
(ω2 + 2M2

π)
]√

M2
π − ω2 arcsin

ω

Mπ

}
, (12)

P loop
3 (ω) =

egA |�q |
m(4πFπ)3

×
{
− π

2
(1 + 4c̃4)

[
ω
√

M2
π − ω2 + M2

π arcsin
ω

Mπ

]}
, (13)

with Fπ = 92.4 MeV, the weak pion decay constant; κn =
−1.913, the neutron magnetic moment; gA = gπNFπ/m =
1.29 and c̃4 = mc4. The low-energy constant c4 has been
determined from pion-nucleon scattering inside the Man-
delstam triangle as c4 = 3.4 GeV−1 [18]. λ is the scale
of dimensional regularization which will be set equal to
λ = m. As a check, these loop contributions fulfill the con-
dition P loop

1,2,3(0) = 0 which confirms that all one-nucleon
reducible pieces are indeed taken out. The analytical con-
tinuation above threshold ω > Mπ is obtained by the fol-
lowing substitutions:√

M2
π − ω2 → −i

√
ω2 − M2

π ,

arcsin
ω

Mπ
→ π

2
+ i ln

ω +
√

ω2 − M2
π

Mπ
. (14)

Similar analytical expressions are found for the other class
of O(q4) loops proportional to g3

A,

P loop
1 (ω) =

eg3
A |�q |

m(4πFπ)3

{
ω2

3
(7 + 4κp + 2κn) ln

Mπ

λ

− (M2
π − ω2)3/2

3ω
(7 + 4κp + 2κn) arcsin

ω

Mπ
+

πM2
π

6ω3

×
[
4M3

π − 6ω2Mπ − 3ω4

Mπ
+ 3ω(2ω2 − M2

π) arcsin
ω

Mπ

+(7ω2 − 4M2
π)

√
M2

π − ω2

]
+

M2
π

6
(17+8κp+4κn)−ω2

9

×(19 + 10κp + 5κn) +
M2

π

2ω2
(ω2 − M2

π) arcsin2 ω

Mπ

}
, (15)

P loop
2 (ω) =

eg3
A |�q |

m(4πFπ)3

{
− 2

3
(5 + 2κp + κn)ω2 ln

Mπ

λ

+
ω2

9
(19 + 10κp + 5κn) +

√
M2

π − ω2

3ω

[
M2

π(7+4κp+2κn)

−2ω2(5+2κp+κn)
]
arcsin

ω

Mπ
− M4

π

2ω2
arcsin2 ω

Mπ

+
πMπ

6ω3

[
4M4

π − 6ω2M2
π + 3ω4 − 4Mπ(M2

π − ω2)3/2

]

−M2
π

6
(11 + 8κp + 4κn)

}
, (16)

P loop
3 (ω) =

eg3
A |�q |

m(4πFπ)3

×
{

π

3ω
(κn − 3κp − 3)

[
M3

π − (M2
π − ω2)3/2

]}
, (17)

which also fulfill the nontrivial condition P loop
1,2,3(0) = 0.

Finally, we are left with the polynomial counterterm
contributions:

P ct
1 (ω) =

egA |�q |ω2

m(4πFπ)3
ξ1(λ) , (18)

P ct
2 (ω) =

egA |�q |ω2

m(4πFπ)3
ξ2(λ) , (19)

P ct
3 (ω) = e |�q | bP

{
ω − M2

π

2m

}
. (20)

The introduced new parameters (LECs) ξ1,2(λ) are di-
mensionless and they balance of course the scale depen-
dence appearing in the fourth-order loop contribution via
the chiral logarithm ln(Mπ/λ). The form of P ct

3 (ω) fol-
lows from the relativistic operators O8 and O9 constructed
in ref. [17]. The LEC bP already appeared at third or-
der, the only new feature here is a kinematical correction
|�k | = ω −M2

π/2m + . . ., which at threshold amounts to a
7% reduction.

Furthermore, we give the resonance contributions to
the low-energy constants ξ1,2 and bP . As mentioned in
ref. [11] there is a small contribution to bP from t-channel
vector meson exchange (ρ0(770) and ω(782)) and conse-
quently also an analogous vector meson exchange contri-
bution to ξ1,2,

b
(V)
P =

5
(4πFπ)3

, ξ
(V)
1 = −2ξ

(V)
2 = − 8

gA
. (21)

Here, we have used various simplifying relations (see
ref. [11]) for the vector meson coupling constants together
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with the KSFR relation for the vector meson masses Mρ �
Mω. The dominant contribution to bP and ξ1,2 come from
the low-lying ∆(1232) resonance. In refs. [11,12] we used
a relativistic tree level approach in which the delta contri-
bution is parametrized in terms of four couplings g1, g2,
Y and Z. The latter two are so-called off-shell parameters
emerging in a relativistic description of the spin-3/2 fields.
In a corresponding effective Lagrangian, these would be
represented by some higher-order contact interactions. In
fact, most of the delta resonance physics can be repre-
sented by the static isobar approach, which can be thought
of as the leading term in a systematic effective field the-
ory expansion like the one given in [15]. In the study of
pion-nucleon scattering [19] it was already demonstrated
that the dominant isobar contributions come indeed from
the lowest-order Born graphs. Therefore, we use here the
static nonrelativistic isobar model where one gets the fol-
lowing expressions:

b
(∆)
P =

κ∗ gA

6
√

2πmFπ

∆

∆2 − M2
π

, (22)

ξ
(∆)
1 = −ξ

(∆)
2 =

κ∗

3
√

2
(4πFπ)2

∆2 − M2
π

, (23)

with ∆ = 293 MeV, the delta-nucleon mass splitting and
κ∗ the N∆ transition magnetic moment. It is important
for the numerical evaluation to keep the M2

π-term in the
denominator, this is also justified in the small scale ex-
pansion, where one counts ∆ as a small parameter like
the pion mass.

For the later discussion of the P -wave LETs, we now
give the various contributions to the slopes P 1,2. We
start with the renormalized Born terms expressed by the
physical pion-nucleon coupling constant gπN , the renor-
malized anomalous magnetic moment κp and the proton
mass m. Furthermore, we introduce the small parameter
µ = Mπ0/m � 0.144 and have

P 1(Born) =
egπN

8πm2

[
1 + κp − µ

2
(2 + κp) +

µ2

8
(9 + 5κp)

]
, (24)

P 2(Born) =
egπN

8πm2

[
− 1 − κp +

µ

2
(3 + κp) − µ2

8
(13 + 5κp)

]
. (25)

Here, novel terms of order µ2 appear. The result for the
chiral loops at order O(q3) can be taken from [11]:

P 1(q3 − loop) =
eg3

πN µ

384π2m2
(10 − 3π) , (26)

P 2(q3−loop) = − eg3
πNµ

192π2m2
. (27)

These contributions are known to be quite small. From
the formulae for P loop

1,2 (ω) and P ct
1,2(ω) given above, one

can readily deduce the terms due to the chiral loops and

counterterms at order O(q4):

P 1(q4−loop, ct) =
egAM2

π

m(4πFπ)3

{[
8
3
c̃4 + 3 +

g2
A

3
(7 + 4κp + 2κn)

]
ln

Mπ

λ

−g2
A

5π

6
+ (1 + 2g2

A)
π2

8
+

4
9
c̃4 + 2

+
g2

A

18
(13 + 4κp + 2κn) + ξ1(λ)

}
, (28)

P 2(q4−loop, ct) =
egAM2

π

m(4πFπ)3

{[
− 4

3
c̃4 − 2 − 2g2

A

3
(5 + 2κp + κn)

]
ln

Mπ

λ

+g2
A

π

6
− (4c̃4 + 2 + g2

A)
π2

8
+

40
9

c̃4+1

+
g2

A

18
(5 − 4κp − 2κn) + ξ2(λ)

}
. (29)

The resulting numerical values will be given later.

4 Results and discussion

The new MAMI differential cross-section data span the
energy range from Eγ = 145.1MeV to 165.6 MeV in steps
of about 1.1 MeV. In addition, the photon asymmetry Σ
has been evaluated for energies from 145 to 166 MeV, all
these data for Σ have been binned to one average en-
ergy of Eγ = 159.5MeV. In total, we have 171 differential
cross-section data, 19 total cross-section points and 7 data
points for the photon asymmetry Σ.

First, it is instructive to compare the new data with
the previously obtained ones of Fuchs et al. [4]. For doing
that, we compare fits using the fourth-order expressions
for the S-wave amplitude E0+ and the third-order ones
for the P -wave amplitudes (as it was done in [11,12]).
The resulting LECs and χ2/dof are collected in table 1.

In both cases the two S-wave LECs are completely
anticorrelated, i.e. only the sum a1 + a2 is of relevance.
It agrees within 10% for the two fits, showing that the
S-wave multipole E0+ is internally consistent. The P -
wave LEC bP is somewhat increased, but now consistent
with the value obtained from fitting the SAL data [6,7],
bSAL
P � 15GeV−3 [12]. This can simply be traced back

to the fact that the new MAMI total cross- sections are
larger than the old ones above the secondary π+n thresh-
old. It is gratifying that this so far puzzling experimental
discrepancy is now resolved.

Next, we wish to investigate the strength of the S-wave
cusp. For that, we use the realistic two-parameter model
developed in ref. [11] (which is similar to the so-called
unitary fit of ref. [5]), where E0+ is given by

E0+(ω) = −a − b

√
1 − ω2

ω2
c

. (30)

Assuming isospin invariance for πN rescattering, the
strength of the cusp given by the parameter b =
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Table 1. Values of the LECs resulting from a three-parameter
fit to the cross-section data of ref. [4] and [9]. Corr denotes
correlation between the two S-wave LECs.

Schmidt et al. Fuchs et al.

a1 [GeV−4] 10.585 3.464

a2 [GeV−4] −4.542 3.136

Corr(a1, a2) −0.998 −0.999

a1 + a2 [GeV−4] 6.04 6.60

bP [GeV−3] 14.84 13.00

No. of data 190 180

χ2/dof 3.19 2.20

√
2 a− Mπ Eπ+n

0+ can be inferred from the well-measured
pion-nucleon scattering length a(π−p → π0n) and the
precise CHPT prediction for the electric-dipole ampli-
tude E0+(γp → π+n) at threshold (which agrees with the
data). This gives b = (3.67± 0.14) · 10−3/Mπ+ [5]. Fitting
the older MAMI data, the resulting value for b came out
sizeably smaller, b � 2.8 · 10−3/Mπ+ [12]. This prompted
some speculations that the strength of the unitary cusp is
very sensitive to isospin violation. If, however, we use this
same model together with the third-order predictions for
the P -waves and apply it to the new MAMI data, we get

a = 0.54 · 10−3/Mπ+ ,

b = 3.63 · 10−3/Mπ+ ,

bP = 14.43 GeV−3 , (31)

with a χ2/dof of 3.21, which is of the same quality as the
one of the three parameter HBCHPT fit discussed before.
The value for b in eq. (31) is in perfect agreement with the
prediction obtained from the final-state theorem and as-
suming isospin invariance for πN rescattering. That sheds
some doubt on the speculation that a precise measurement
of the unitary cusp would be a good tool to investigate
isospin violation. The resulting real part of E0+ is given
by the dash-dotted line in fig. 1.

In this simple three-parameter approach, one can also
predict the photon asymmetry Σ, since P3 is governed
by the LEC bP and P2 is given by the LET. Of course,
in the full fit involving also the fourth-order contribution
to the P -waves, one has additional terms from loops and
counterterms, nevertheless, in this simplified ansatz one
can already estimate the corrections to be expected from
these additional terms. Using the LECs collected in ta-
ble 1, we obtain the dash-dotted line in fig. 2, which agrees
quite well with the data from the MAMI analysis. There-
fore, we conclude that the corrections to the P2 multipole
should be small. Also, we had already noted before that
P3 is only modified on the percent level by the fourth-
order corrections. Thus, to keep the fine balance between
|P2|2 and |P3|2, which governs the size of Σ, only modest
corrections to P2 should be expected.

We now discuss the full fits including the fourth-order
corrections to the P -wave multipoles P1,2,3(ω). We have
performed two types of fits. In set I, we only fit to the dif-
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Fig. 1. The electric-dipole amplitude in the threshold region.
Upper panel: real part. Dash-dotted line: two-parameter model
for the electric dipole amplitude. Solid/dashed line: full CHPT
fits corresponding to sets I/II of the parameters. Lower panel:
the modulus of E0+ for the full fit (see text) in comparison to
the SAL data [6,7].

ferential and total cross-section data excluding the photon
asymmetry Σ. For set II, we include the photon asymme-
try data in the fits. Let us first discuss the electric-dipole
amplitude. It should come out to be (largely) indepen-
dent of the fitting procedure since Σ is only indirectly
sensitive to the S-wave. The resulting LECs are collected
in table 2. As expected, one finds a very similar result for
a1 + a2 in agreement with the previous determinations.
The resulting E0+(ω) comes out indeed to be indepen-
dent of the fitting procedure, as shown by the solid and
dashed lines in fig. 1. It is in good agreement with deter-
minations based on the older MAMI and the SAL data,
which lead to E0+(ωthr) = −(1.3 ± 0.2) · 10−3/Mπ+ and
also with the result obtained from the new MAMI data,
E0+(ωthr) = −(1.33 ± 0.08 ± 0.03) · 10−3/Mπ+ . There-
fore, even though the convergence of the chiral expansion
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Fig. 2. The photon asymmetry at Eγ = 159.5 MeV. Dash-
dotted line: prediction of the two-parameter model for the elec-
tric dipole amplitude. Solid line: full CHPT fit including the
photon asymmetry data (set II). The data are from [9].

Table 2. Values of the S-wave LECs and E0+ at the two
thresholds resulting from the five-parameter fits of the data
of ref. [9]. Corr(a1, a2) denotes correlation between the two
S-wave LECs.

Set I Set II

a1 [GeV−4] 7.734 8.588

a2 [GeV−4] −1.506 −2.288

Corr(a1, a2) −0.998 −0.998

a1 + a2 [GeV−4] 6.23 6.30

χ2/dof 1.36 1.35

E0+(ωthr) [10−3/Mπ+ ] −1.13 −1.12

E0+(ωc) [10−3/Mπ+ ] −0.53 −0.52

in this multipole is slow, the fourth-order calculation is
able to describe it in the threshold region with one pa-
rameter (the sum of LECs a1 + a2). This small value for
E0+ at threshold clearly establishes the large pion loop
effect first pointed out in [10]. For completeness, we also
show in fig. 1 the modulus of the electric-dipole amplitude,
|E0+| = ([Re E0+]2 + [Im E0+]2)1/2, in comparison to the
data from SAL [6,7], which nicely shows the unitary cusp.

We now turn to the P -waves. Here, we encounter the
following problem. While the best fit of type I gives a good
χ2/dof, see table 2, there is an almost perfect correlation
between bP , ξ1 and ξ2 (which is expected since the dif-
ferential cross-sections are only sensitive to |P2|2 + |P3|2)
and the resulting values for bP or ξ2 come out either too
large (based on expectations from resonance exchange, to
be discussed below) or with too large uncertainty. We have
also performed fits with fixing bP at the previously deter-
mined value of 14.8 GeV−3, which gives almost the same
χ2/dof but a wastly different value for ξ2. Furthermore,
including the leading effects of D-waves in the low-energy
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Fig. 3. Real part of the P -waves Pi (i = 1, 2, 3) versus photon
energy.

region does not change this. On the other hand, in all
cases the LEC ξ1 comes out in a narrow range, which is
in agreement with the estimates based on resonance ex-
change to be discussed next. If one includes the photon
asymmetry data, the cross-sections and the photon asym-
metry are well described, see the solid line in fig. 2, but
the resulting value for bP is too large, whereas ξ1 and ξ2

come out of the size expected from resonance saturation.
For completeness, we show the energy dependence of the
real parts of the P -wave multipoles for the fit including
the asymmetry data in fig. 3.

Therefore, to get a more reliable estimate of the cor-
rections to the P -wave LETs, we employ the resonance
saturation hypothesis. First, taking the parameters used
here, the LET predictions read (which are nothing but
the sum of the third-order renormalized Born and loop
terms):

P
LET

1 = 0.469 GeV−2, [0.445, 0.492] GeV−2,

P
LET

2 = −0.498 GeV−2, [−0.472,−0.523] GeV−2, (32)

where the numbers in the square brackets refer to a 5%
theoretical uncertainty. The results based on the new
MAMI data are [9]:

P
exp

1 = (0.441 ± 0.004 ± 0.013) GeV−2,

P
exp

2 = (−0.440 ± 0.005 ± 0.013) GeV−2, (33)

which are in good agreement with the LET predictions.
From our fourth-order results, we get for the sum of renor-
malized Born, third- and fourth-order loop and countert-
erm contributions

P 1 = (0.460 + 0.017 − 0.133 + 0.0048 ξ1) GeV−2 , (34)

P 2 = −(0.449 + 0.058 − 0.109 + 0.0048 ξ2) GeV−2 , (35)

where the ξ1,2 only depend on the N∆ transition mag-
netic moment. We note the rather sizeable (25%) correc-
tion from the fourth-order loops which at first sight seems
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Table 3. Prediction for the P -wave slopes for variations of the
N∆ transition magnetic moment κ∗.

κ∗ P 1 [GeV−2] P 2 [GeV−2]

4.0 0.408 −0.475

4.5 0.416 −0.487

5.0 0.427 −0.498

5.5 0.439 −0.509

6.0 0.450 −0.521

6.5 0.461 −0.532

to destroy the agreement between the LETs and the data.
However, it is known that κ∗ � 4 . . . 6, so we collect in
table 3 the predictions for P 1,2 for reasonable variations
of κ∗. We see that for κ∗ = 4, the delta contribution al-
most completely cancels the large fourth-order loop effect
and thus the predictions for the P -wave slopes are within
7% of the empirical values. Note, however, that the em-
pirical finding P

exp

1 = −P
exp

2 is difficult to reconcile with
any theory. For easier comparison with other calculations,
one can express the dependence of Γ (∆ → Nγ) on the
transition magnetic moment κ∗ in terms of the helicity
amplitudes A1/2 and A3/2

Γ (∆+ → pγ) =
k2

γm

2πm∆

(
|A1/2|2 + |A3/2|2

)
,

kγ =
m2

∆ − m2

2m∆
, (36)

to be compared with the formula obtained in a fully rela-
tivistic calculation (for details see appendix E in ref. [1]):

Γ (∆+ → pγ) =
e2κ∗2

72πm2
∆m2

(3m2
∆ + m2)k3

γ

� κ∗2 28.55 keV . (37)

Using now the empirical values A1/2 = (−0.135 ±
0.006)GeV−1/2 and A3/2 = (−0.255±0.008)GeV−1/2 [20]
leads to κ∗ = 4.86 with a much smaller uncertainty than
given in table 3. However, we still give this somewhat
larger range for κ∗ to better display the sensitivity of our
results to this parameter.

5 Summary

In this paper, we have studied near-threshold neutral pion
photoproduction off protons in the framework of heavy-
baryon chiral perturbation theory to complete one loop
(fourth-order) accuracy, updating and extending previous
works on this topic [11,12]. The pertinent results of this
investigation can be summarized as follows:

i) We have given the fourth-order corrections (loops and
counterterms) to the three P -wave multipoles P1,2,3.
Two new low-energy constants appear, one for P1 and

the other for P2. We have also given analytic expres-
sions for the corrections to the low-energy theorems
for the P -wave slopes P 1,2, see eqs. (28),(29).

ii) We have analyzed the new MAMI data [9] first in the
same approximation as it was done in previous works
(i.e. the P -waves to third-order only). Using a realis-
tic two-parameter model for the energy dependence of
the electric-dipole amplitude E0+, we have extracted
the strength of the unitary cusp which agrees with the
prediction based on the final-state theorem.

iii) Using the full one loop amplitude, one can fit the
cross-section data and the photon asymmetry. The
combination of S-wave LECs is stable and agrees
with previous determinations, leading to E0+(ωthr) =
−1.1 · 10−3/Mπ+ . Two of the three P -wave LECs are
not well determined because of strong correlations.
More photon asymmetry data are needed to cure this
situation.

iv) We have analyzed the new LECs in the framework of
resonance saturation in terms of (dominant) ∆ isobar
and (small) vector meson excitations. The isobar con-
tributions depend only on the strength of the N∆ tran-
sition magnetic moment. We have shown that for rea-
sonable values of this constant, the 25% fourth-order
loop corrections to the P -wave LETs are almost com-
pletely cancelled by the isobar terms. This solidifies
the third-order LET predictions, which are in good
agreement with the data, cf. eqs. (32),(33).

We are grateful to Reinhard Beck and Axel Schmidt for com-
municating the new MAMI data before publication.

References

1. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys.
E 4, 193 (1995).

2. U.-G. Meißner, in Boris Ioffe Festschrift - “At the Frontier
of Particle Physics–Handbook of QCD”, Vol. 1, edited by
M. Shifman (World Scientific, Singapore, 2001) pp. 417–
506, hep-ph/0007092.

3. R. Beck et al., Phys. Rev. Lett. 65, 1841 (1990).
4. M. Fuchs et al., Phys. Lett. B 368, 20 (1996).
5. A.M. Bernstein et al., Phys. Rev. C 55, 1509 (1997).
6. J.C. Bergstrom et al., Phys. Rev. C 53, (1996) R1052.
7. J.C. Bergstrom et al., Phys. Rev. C 55, 2016 (1997).
8. J.C. Bergstrom et al., Phys. Rev. C 57, 3203 (1998).
9. A. Schmidt et al., submitted to Phys. Rev. Lett., nucl-

ex/0105010.
10. V. Bernard, J. Gasser, N. Kaiser, U.-G. Meißner, Phys.

Lett. B 268, 291 (1991).
11. V. Bernard, N. Kaiser, U.-G. Meißner, Z. Phys. C 70, 483

(1996).
12. V. Bernard, N. Kaiser, U.-G. Meißner, Phys. Lett. B 378,

337 (1996).
13. S.R. Beane, V. Bernard, T.-S.H. Lee, U.-G. Meißner, U.

van Kolck, Nucl. Phys. A 618, 381 (1997).
14. J.C. Bergstrom, Phys. Rev. C 52, 1986 (1995).
15. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B

395, 89 (1997); J. Phys. G 24, 1831 (1998).
16. V. Bernard, T.R. Hemmert, U.-G. Meißner, in preparation.



216 The European Physical Journal A

17. N. Fettes, U.-G. Meißner, M. Mojžǐs, S. Steininger, Ann.
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